
NUMERICAL MODELING OF THE DIFFUSION-LIMITED
KINETICS OF FORMATION OF A THIN FILM FROM
A POLYMER SOLUTION. 1. CONSTANT COEFFICIENT
OF DIFFUSION
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By the method of numerical modeling, the kinetics of formation of a thin film from a polymer solution has
been investigated. The regularities of the change in the thickness of a polymer layer and the concentration
field in the process of drying as a function of the initial concentration of the polymer, the initial thickness of
the layer, the value of the coefficient of mutual diffusion, and the concentration-dependent rate of evaporation
of a solvent have been found.

Molding of films is one technique of mass processing of polymers [1] in which one uses heating of a metal
tape and blowing of the polymer surface, which determines the complex multistage character of mass-exchange proc-
esses of formation of a film [2]. One problem in the field of film materials is the production of filled films, in par-
ticular, conductive polymer adhesives and spacers [3]. The conductivity of such films is attained by introduction of a
finely dispersed conductive filler into the fluid polymer composition. The percolation properties of the material depend
on the character of the structure of filler particles which is formed in the process of hardening [4]. The process of for-
mation, apart from the particle interactions, is determined by the kinetics of change in the properties of the polymer
matrix [5]. Allowance for the kinetics of the properties of a polymer binder is pressing in modeling [6] and practical
implementation [7, 8] of the process of dissipative electromagnetic texturing of a disperse filler, which is carried out
by the action of a rotating magnetic field on the hardened composition. Unlike the regular processes of molding of
polymer films, the formation of structured composite films is a fairly slow heating- and blowing-free process. This
makes it unnecessary to consider convective diffusion in a film, which substantially simplifies this problem as com-
pared to the problem of mass molding [2]. At the same time, quite detailed information on the diffusion-limited stage
of the process is required, which is absent from the literature on molding and is the subject of this investigation. The
problem of the investigation lies in finding the regularities of a change in the thickness and the concentration field in
a drying film of a polymer solution with allowance for the initial concentration of the polymer and the thickness of
the solution layer and the concentration-dependent rate of evaporation of the solvent and the coefficient of diffusion of
the polymer. Together with additional information on the concentration dependence of the solution viscosity, which can
be obtained experimentally with the magneto-optical method [9], the studied characteristics of the process yield a total
volume of the initial data for modeling of the processes of structurization of a disperse filler.

Formulation of the Problem. We consider a binary solution of a polymer in a low-molecular-weight liquid.
It is assumed that the polymer and the solvent can be mixed in any proportion. The content of the polymer is char-
acterized by the mass concentration c. The solution is applied as a uniform layer onto an impermeable horizontal sur-
face. The upper surface of the layer is free. At the initial instant of time, the thickness of the layer is equal to H0 and
the concentration of the polymer is equal to c0. The layer thickness decreases at the initial instant of time in the proc-
ess of evaporation, whereas the excess of the polymer, formed on the surface, is transferred deep into the layer by dif-
fusion. The problem lies in finding the regularities of the shrinkage H(t) and the space-time variation in the
concentration c(z, t) for a fairly wide range of variation of the system’s parameters. Along with the already introduced
H0 and c0, they are the local-concentration-dependent coefficient of mutual diffusion of the polymer and the solvent
D(c), the density of the solution ρ, and the coefficient of mass transfer from the layer surface β.
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The expression for the shrinkage rate is obtained from the equation of variation of the mass of the layer of
unit area

dH

dt
 = − 

js
ρs

 . (1)

The relation for js will be obtained in the following manner. In evaporation of the solvent, a layer of saturated vapor
with concentration cv,s is formed directly above the film surface. The vapor flow is determined by the conditions of
transfer from the surface layer (diffusion and convection) and is in direct proportion to the concentration of the satu-
rated vapor js = βcv,s by virtue of the linearity of the transfer equations. We take into account that the concentration
of the saturated vapor is in direct proportion to its pressure P, which is known to decrease with increase in the con-
centration of the substance dissolved. For a nonvolatile substance in the region of low concentrations the decrease in
the pressure of the saturated vapor is in proportion to the amount of the substance dissolved in a given weight amount
of the solvent (Raoult’s law), i.e., ∆P ⁄ P = −Q ⁄ q. Thus, in a diluted solution, we have js = βcv,s

0 (1 − QΣ ⁄ qΣ), where
cv,s

0  is the concentration of the saturated vapor of a pure solvent. To generalize this dependence to polymer solutions
of arbitrary concentration we replace the quantity Q by the number of monomer links in a unit volume of the solution
Q1 and the quantity Q/q by Q1/(q + Q1). In this case we have js = βcv,s

0 (1 − Q1Σ/(Q1Σ + qΣ)). According to this relation,
the solvent flow tends to zero with increase in the concentration of the polymer. Using Q1 = ρc ⁄ m1 and q =
ρ(1 − c)/ms, where m1 is the mass of a polymer link and ms is the mass of a solvent molecule, we write

 js = βcv,s
0

 










1 − 
cΣ

cΣ + (1 − cΣ) 
m1

ms











 = βcv,s
0 γ ,   γ = 

1 − cΣ

cΣ 
ms

m1
 + (1 − cΣ)

 . (2)

With account for (2), the equation for the rate of shrinkage of the layer takes the form

dH

dt
 = − w0γ .

(3)

According to (3), the layer of a pure solvent (cΣ = 0) evaporates over the period T = H0
 ⁄ w0, which will be used fur-

ther as the characteristic time of the problem.
The distribution of the polymer in the drying layer obeys the differential equation of balance of the polymer

mass

∂ (ρc)
∂t

 = − div (j + vρc) .

The density of the solution depends on the concentration of the polymer. However, this dependence is of no
decisive importance and to reduce the number of parameters and to simplify an analysis of the results we set ρ =
const. This condition is observed rigorously if the density of the polymer is equal to the density of the solvent and
the volume of the mixture of any concentration is equal to the sum of volumes of the components (ideal solution).
The equality of the polymer and solvent densities yields the absence of the motion of the liquid as a whole (v = 0),
since the polymer flow is compensated for with the oppositely directed solvent flow. Using Fick’s law for the diffu-
sion polymer flow and taking into account that the concentration depends only on the coordinate z, we obtain

∂c (z, t)
∂t

 = 
∂
∂z

 



D (c) 

∂c (z, t)
∂z




 . (4)

We write the boundary conditions for (4). At the lower boundary, we have the impermeability condition

∂c
∂z


 z=0

 = 0 . (5)
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The boundary condition of the free surface will be found from the equation of balance of the polymer mass
in a thin surface layer. Taking into account that a change in the polymer mass in this layer occurs only by diffusion
through its lower boundary (z = ζ), we have

d
dt

  ∫ 
ζ

H(t)

 cdz B cΣ 
dH
dt

 + ∫ 
ζ

H
∂c
∂t

 dz = − D (c)
∂c
∂z


 z=ζ

 .

Letting ζ tend to H, we obtain the boundary condition in the form

cΣw0γ = D (cΣ) 
∂c
∂z


 z=Σ

 . (6)

We pass to a fixed region with the use of the transformation r = z/H(t). Having introduced the dimensionless
time τ = t/T, the layer thickness h(t) = H(t)/H0, and the diffusion coefficient d(c) = D(c)/D0, we transform the equa-
tions and boundary conditions (3)–(6):

dh

dτ
 = − γ ,   

∂c

∂τ
 = 
∂c

∂r
 

r

h (τ)
 γ + A 

1

h
2
 (τ)

 
∂

∂r
 



d (c) 

∂c

∂r




 ,

∂c
∂r


 r=0

 = 0 ,   cΣγ (cΣ) = A 
d (cΣ)
h (τ)

 
∂c
∂r



 r=1

 ,   A = 
D0

w0H0
 .

(7)

Here the dimensionless parameter A is the ratio of the time of evaporation of the layer of a pure solvent of thickness
H0 to the characteristic time of diffusion equalization of the concentration.

In the case of infinitely mixing polymer and solvent, the change in the coefficient of mutual diffusion with
concentration of the solvent cs = 1 − c is characterized by convex dependences with a weak maximum [10]. Such de-
pendences can be approximated by the function

log D = A + 
Bcs

1 + Fcs
2 , (8)

containing the fitting coefficients A, B, and F. We can find them for a specific system with the use of the known val-

ues of the diffusion coefficient in the limits cs → 0 (D = D1) and cs → 0 (D = D0) and the value of the concentration

of the solvent cmax
s , which corresponds to the maximum diffusion coefficient (Fig. 1). We obtain that A = log D1, B

= 
(cmax

s )2 + 1

(cmax
s )2

 log Z, F = 
1

(cmax
s )2

, and Z = 
D0

D1
. Passing from the concentration of the solvent to the concentration of

the polymer (cs = 1 − c, cmax
s  = 1 − cmax), we should take into account that the initial coefficient of diffusion will be

D cs→0 = D0 and not D cs=1 = D1. Thus, the expression for the diffusion coefficient has the form

D ⁄ D0 = d (c) = Z
Ψ

 , (9)

where Ψ = 
(1 – c)[(1 – cmax)

2 + 1] – (1 – cmax)2 – (1 – c)2

(1 – cmax)
2 + (1 – c)2

.

Figure 1 gives the dependence D(cs) for dibutylphthalate (the points are the experimental data of [10] and the
curve is the approximating function).

Finite-Difference Scheme. The diffusion equation in (7) has been solved with the explicit difference scheme
on a uniform grid. The right-hand side of this equation for each instant of time has been approximated by the relation
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 i

 C 
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δx

 




d(i+1) ⁄ 2 (ci+1 − ci)

δx

 − 
d(i−1) ⁄ 2 (ci − ci−1)

δx




 = 

1

δx
2 (d(i+1) ⁄ 2 (ci+1 − ci) − d(i−1) ⁄ 2 (ci − ci−1)) .

Thus, for the internal nodes (i = 1, ..., N − 1) the relationship between the values of the concentration at the
present instant of time, c1, and the previous values, c, is yielded by the following relation:

c1i = ci + 
Rδx 

2
j

2h
 (ci+1 − ci−1) γ + 

AR

h
2

 [d(i+1) ⁄ 2 (ci+1 − ci) − d(i−1) ⁄ 2 (ci − ci−1)] ,

here R = δt
 ⁄ δx

2.
The coefficients of mutual diffusion d(i+1) ⁄ 2 and d(i−1) ⁄ 2 are determined from formula (9); however it is nec-

essary to prescribe the values of the concentration of the polymer at the same points (c(i+1) ⁄ 2 for determination of
d(i+1) ⁄ 2 and c(i−1) ⁄ 2 for d(i−1) ⁄ 2). We obtain these values, expanding the polymer concentration in a Taylor series:

c(i+1) ⁄ 2 = 
3
4

 ci + 
3
8

 ci+1 − 
1
8

 ci−1 ,   c(i−1) ⁄ 2 = 
3
4

 ci − 
1
8

 ci+1 + 
3
8

 ci−1 .

For the external nodes (i = 0, N) the equations for the boundary conditions in system (7) yield the following
relationship for the concentration values: c0 = c1 at the impermeable (lower) boundary and

cN = 
(φcN−1 + φ − 1 − MφcN−1) − √(φcN−1 + φ − 1 − MφcN−1)

2 − 4φcN−1 (φ − 1 − Mφ)
2 (φ − 1 − Mφ)

 ,

M = 
ms

m1
 ,   φ = 

AdN

hδx
 .

on the free surface.

Fig. 1. Approximation of the dependence of the diffusion coefficient. log D,
cm2/sec.
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The relationship between the value of the layer thickness at the present instant of time h1 and this value at
the previous instant of time h is obtained from the equation for the rate of shrinkage of the layer (see system (7)) in
the form

h1 = h − Rδx
2γ .

Kinetics of Drying of the Polymer with a Constant Coefficient of Diffusion. Setting the diffusion coeffi-
cient to be constant (B = 1), we consider the influence of the initial concentration of the polymer c0, the relation of
the molecular masses of the solvent and the polymer M, and the relation of the times of evaporation of a pure solvent
and of diffusion equalization of the concentration A on the process of formation of a polymer film.

Figure 2 illustrates a variation in the concentration profile in the process of drying for different values of A
for fixed c0 (0.1) and M (0.001). For each A 13 profiles are presented; the first 12 profiles have been derived as the
relative thickness of the layer hr = (h − c0)/(1 − c0) decreased by ∆hr = 0.1, and the last profile has been derived upon
the evaporation of 99% of the solvent. The instants of time at which the profiles have been derived are given in Table
1. As we see, whereas the distribution of the polymer concentration over the layer thickness remains nearly uniform
in the process of formation of the film in the case of intense diffusion (A > 1), the polymer begins to collect on the
layer surface with decrease in the diffusion intensity, which leads to the formation of a crust and increases the dura-
tion of the process.

Figure 3 (the times are summarized in Table 2) shows the variation in the concentration profile for different
values of M and A for a fixed c0 (0.1). As we see, for large A (A > 1) the concentration distribution is weakly sensi-
tive to how strongly the masses of the polymer and solvent molecules differ. For small A an increase in the molecular
weight of the polymer leads to the formation of a crust on the drying-layer surface and a decrease in the drying time.
The latter is explained by the fact that the evaporation rate, as shown in Fig. 4, increases with decrease in M.

Fig. 2. Concentration distribution of the polymer over the layer thickness for
different values of the parameter A: a) A = 0.01; b) 0.1; c) 1; d) 10.
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Let us consider what parameters influence a variation in the layer thickness with time. Figure 5 shows the
variation in the thickness of the drying layer for different values of the initial concentration in it and the parameters
A and M. As we see, in the case of a high-molecular-weight polymer the initial concentration of the polymer c0 exerts

TABLE 2. Values of the Times That Correspond to Different Profiles (see Fig. 3)

Profile No.
Fig. 3a Fig. 3b Fig. 3c

M = 0.001 M = 0.1 M = 1 M = 0.001 M = 0.1 M = 1 M = 0.001 M = 0.1 M = 1
1 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
2 0.10 0.10 0.12 0.10 0.10 0.11 0.10 0.10 0.11
3 0.20 0.21 0.26 0.20 0.20 0.23 0.20 0.20 0.23
4 0.30 0.31 0.41 0.30 0.31 0.35 0.30 0.30 0.34
5 0.40 0.42 0.58 0.40 0.41 0.47 0.40 0.41 0.46
6 0.50 0.54 0.75 0.50 0.51 0.60 0.50 0.51 0.58
7 0.60 0.65 0.94 0.60 0.61 0.73 0.60 0.61 0.71
8 0.70 0.78 1.14 0.70 0.72 0.86 0.70 0.71 0.84
9 0.80 0.91 1.36 0.80 0.82 1.01 0.80 0.82 0.98

10 0.91 1.05 1.61 0.90 0.93 1.20 0.90 0.93 1.16
11 0.97 1.13 1.79 0.95 0.99 1.33 0.95 0.98 1.29
12 1.07 1.25 2.09 0.99 1.05 1.56 0.99 1.04 1.52
13 1.18 1.39 2.46 1.00 1.10 1.86 1.00 1.09 1.89

Fig. 3. Variation in the polymer-concentration distribution in passage from a
low-molecular-weight polymer to a high-molecular-weight polymer: a) A = 0.1;
b) 1; c) 10 [1) M = 0.01; 2) 0.1; 3) 1].

TABLE 1. Values of the Times That Correspond to Different Profiles (see Fig. 2)

Profile No. Fig. 2a Fig. 2b Fig. 2c Fig. 2d
1 0.00 0.00 0.00 0.00
2 0.09 0.09 0.09 0.09
3 0.27 0.18 0.18 0.18
4 0.55 0.27 0.27 0.27
5 0.94 0.36 0.36 0.36
6 1.44 0.45 0.45 0.45
7 2.05 0.54 0.54 0.54
8 2.76 0.63 0.63 0.63
9 3.58 0.72 0.72 0.72
10 4.52 0.82 0.82 0.82
11 5.11 0.87 0.86 0.86
12 6.00 0.96 0.89 0.89
13 6.97 1.06 0.90 0.90
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a substantial influence on the process of formation of a polymer film in retarded diffusion (A < 1). This influence de-
creases when A > 1 and is insignificant even when A = 10. In the case of a low-molecular-weight polymer c0 has an
effect for all the A values considered, but, as the diffusion intensity increases, the time of formation of the film de-
creases.

It is noteworthy (Table 1) that the times of formation of the film are actually the same for A = 1 and A =
10. Consequently, the time tends to a certain asymptotic function of the initial concentration with increase in A. The
existence of the asymptotics is motivated by the fact that the distribution of the polymer concentration over the layer

Fig. 4. Variation in the evaporation rate in passage from a high-molecular-
weight polymer to a low-molecular-weight polymer: 1) M = 0.01; 2) 0.1; 3) 1.

Fig. 5. Variation in the thickness of the solvent layer with time: a) A = 0.1
and M = 0.001; b) 10 and 0.001; c) 0.1 and 1; d) 10 and 1 [1) c0 = 0.1; 2)
0.3; 3) 0.5].
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in the process of evaporation remains uniform, in practice, for large A. This yields a direct relationship of the concen-
tration and the layer thickness: cH = c0H0, or c = c0

 ⁄ h, using which in the equation for the rate of shrinkage of the
layer dh/dτ = −γ, we obtain the asymptotic dependence sought in the form

h (τ) + c0M ln 




h (τ) − c0

1 − c0




 = 1 − τ . (10)

As the characteristic time of formation of the film, we select the time τe in which 99% of the solvent evapo-
rates; here, hr = 0.01 and h = 0.01 + 0.99c0. According to (10), we have

τe = 0.99 + c0 [4.605M − 0.99] .

A comparison to the calculated data (A = 10, M = 0.001, and c0 = 0.1) yields an error of 0.8%.
In the calculations performed, the initial thickness of the film was assumed to be fixed and the thickness of

the produced film Hf was determined by the initial concentration of the polymer. To produce a film of prescribed
thickness one can use either a large amount of the solvent with a low concentration of the polymer (i.e., a layer of
large thickness) or the opposite. This brings up the question: what is more profitable from the viewpoint of the for-
mation of the film?

Figure 6 illustrates the dependence of the time of formation of the film of thickness Hf on the initial thick-
ness of the layer for different values of the parameters A and M. As we see, in the case of a high-molecular-weight
polymer (M = 0.001) and retarded diffusion (A < 1) the formation time increases with decrease in H0. The reason is
that, when H0 values are low, the initial concentration of the polymer is high, which promotes the formation of a crust
on the layer surface (Fig. 7). As A increases, the influence of the initial layer thickness on the time is not observed.

Fig. 6. Influence of the initial content of the polymer in the solution on the ki-
netics of formation of a film of prescribed thickness: a) A = 0.1 and M =
0.001; b) 10 and 0.001; c) 0.1 and 1; d) 10 and 1 [1) c0 = 0.1; 2) 0.3; 3)
0.5].
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In the case of a low-molecular-weight polymer the dependence of the time of formation of the film on the initial
thickness of the layer is observed for all the A values studied. The time itself drops with increase in A.

NOTATION

c, mass concentration; D, coefficient of mutual diffusion; H, layer thickness; N, number of grid nodes; i, node
No., i = 0, ..., N; Q and q, number concentrations of the molecules (or number of nodes) of the substance and the
solvent; x, z, coordinates; t, time; j, flux density; P, pressure; m, mass; w0, rate of decrease of the thickness of the
pure-solvent layer; T, characteristic time; v, total momentum of a mass unit of the solution; δi and δx, steps of the
time and coordinate grids; ρ, density of the solution; β, coefficient of mass transfer from the layer surface. Subscripts
and superscripts: s, solvent; v, vapor; e, evaporation; r, relative; f, film; Σ, layer surface; max, maximum value; 0, in-
itial value.
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